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Abstract. We study the diffraction spectrum and the structure factor of quasicrystalline, 
aperiodic, linear arrays with two arbitrary characteristic measure lengths, produced by a 
fairly general family of generating rules depending on two parameters. The calculation is 
performed by actually constructing the two-dimensional periodic structure whose projection 
will result in the desired linear aperiodic array. Distributions of some sequences of irrational 
numbers modulo 1 are derived as a byproduct of the main subject. 

1. Introduction 

A commonly accepted procedure for constructing quasicrystalline structures (such as 
sums of delta functions located at points which are distributed neither periodically 
nor randomly) is by projecting periodic structures from a higher-dimensional space. 
De Bruijn (1981a) was the first to propose an algebraic approach to describe the 
Penrose (1979) aperiodic patterns in two dimensions. He also showed that the same 
results can be obtained by projecting a five-dimensional cubic lattice onto a two- 
dimensional subspace. Kramer and Neri (1984) and Duneau and Katz (1985) later 
generalised these ideas to construct aperiodic fillings of an m-dimensional Euclidean 
space by projection of a periodic grid from an n-dimensional space, 1 s m < n. Levine 
and Steinhardt (1984), on the other hand, have defined a set of geometric rules for 
generating quasicrystalline structures, which are based on the concept of quasi- 
periodicity. 

A number of authors have recently set out to study various physical properties of 
quasicrystalline model systems. Lu et al (1985) investigated the phonon spectrum of 
harmonic oscillators and the energy spectrum of electrons on a linear Fibonacci chain. 
General properties of diffraction spectra of quasiperiodic lattices were studied by Elser 
(1985, 1986) and Zia and Dallas (1985). These works include, by way of illustration, 
the construction of a linear quasiperiodic array by projecting a given two-dimensional 
square periodic lattice on a line whose slope is an irrational number. 

The purpose of this paper is to solve explicitly the inverse projection problem for 
a fairly general family of quasiperiodic arrays. By ‘inverse problem’ we mean that the 
linear array is specified by some generating procedure, depending on a small number 
of parameters. Then a two-dimensional periodic structure is constructed in such a way 
that its projection on a line will result in the desired quasiperiodic array. The Fourier 
coefficients of the periodic structure calculated on the projection line define the 
diffraction spectrum and the structure factor of the linear array. These are uniquely 
defined by the array specifying parameters. 

0305-4470/86/ 163299 + 14%02.50 @ 1986 The Institute of Physics 3299 
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We consider a linear array of pointlike ‘atoms’. Adjacent points are separated by 
one of two characteristic lengths. Crucial to the solution of the proposed problem is 
our ability to write down an explicit formula for the coordinate xj of the j th  point i.n 
the array. This amounts to knowing how many line segments of each type there are 
among the first j segments of the sequence. A sequence of these line segments is 
isomorphic to a binary sequence of objects, say 0 and 1, which were extensively studied 
in the mathematical literature in connection with the theory of complementary sets of 
integers. A very incomplete list of relevant articles includes works by Fraenkel (1969), 
Gilbert (1963), Lambek and Moser (1954), de Bruijn (1981b), Stolarsky (1976) and 
Fraenkel er al (1978). 

An infinite binary sequence of 0 and 1 is a very general object: it may be constructed 
at random, or specified by some deterministic algorithm, which in turn may depend 
on an infinite or a finite set of parameters. The occupation of a given site in a 
deterministic sequence may or may not depend upon the occupation of other sites. 
The sequence may be periodic or aperiodic. Even aperiodic sequences may exhibit a 
large variety of pattern regularities, etc. 

In this paper we consider a deterministic rule for generating binary sequences 
which is fairly general in the sense that it depends on two parameters ( U  and w, see 
below). For some values of these parameters a variety of periodic patterns will result. 
For others, however, the rule will produce aperiodic sequences, which can be shown 
to be strongly related to quasiperiodic and almost periodic functions (Bohr 1951, 
Katznelson 1976, Avron and Simon 1981). Results from the theory of this type of 
binary sequence provide the necessary tools to establish the relation between the index 
of a site in the sequence and the index of the element occupying the given site, allowing 
the problem of Fourier transformation to be solved in closed form. 

The rule is incorporated in a well known theorem from the theory of complementary 
sets of integers. This theorem has appeared in the literature in various forms and 
degrees of generality. The form best suited for our purpose is found in a paper by de 
Bruijn (1981b), theorem 5.3. We shall restate the theorem without proof, omitting 
some details which are unimportant in the present context, and allowing for some 
convenient changes of notation. 

Theorem 1 .  Let N be the set of positive integers. Let v and w be real numbers, v >  1. 
Define the sequence p ( j )  by 

(1) 

(2) 

p(A = [ ( j  + I ) /  U + w l  - [ j /  U + w l  

SI: { j ( j = [ ( k -  w)u], ICE N }  

j e  N. 

Then p is a sequence of 0 and 1. The sequence p takes its 1 on the set 

and its 0 on the set 

So: { j ( j = [ ( Z + w ) u ] ,  Z E  N }  

where U is defined by 

l / u + l / u  = 1. 

The sets SI,  So satisfy SI n So = 0, S1 U So = N. 

(3) 

(4) 

The symbol [XI denotes the greatest integer not exceeding x. Although the original 
theorem was formulated for J, k, Z E 2, the set of all integers, in this paper however, it 
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is convenient to consider only the positive integers. The sequence p is sometimes 
referred to as a ‘Beatty sequence’ (Stolarsky 1976), while the sets S ,  and So are classified 
as ‘non-homogeneous complementary systems’ (see, e.g., Fraenkel 1977, Boshernitzan 
and Fraenkel 1981). In the case w =0, an additional restriction must be put on U, 
namely U # 2; otherwise equations (2) and (3)  fail to generate complementary sets. It 
turns out that U = 2 is a ‘singular’ value of the parameter (see Q 2). Its exclusion does 
not alter in any way the general scope of this work. If j denotes the position index 
of an element in the sequence p, then according to equations (2) and (3),  k and 1 are 
the number of 1 and 0, respectively, among the first j elements of the sequence. 
Obviously k + 1 = j. 

Equations (2) and (3)  can be inverted to give k and 1 as functions of j: 

k = [ ( j + l ) / u + w ]  j e N  ( 5 )  

1 = [ ( j +  l ) / u  - w] j E N. (6)  

These expressions allow us to write an explicit formula for x j .  k and 1 are monotonic 
staircase functions of j increasing by one every time an element 1 (or 0, respectively) 
is encountered along the sequence. Asymptotically k = j/ U + O( l ) ,  1 = j / u  + O( l ) ,  and 
the functions follow average slopes of l / u  and l / u ,  respectively, never deviating from 
the slope by more than one unit of the ordinate. If U and U are irrational numbers 
then the deviation never vanishes at integer values of j, except 0. The following 
description will help a better understanding of the matter. Suppose that somebody 
has prepared for us the beginning of a particular p (  j )  sequence up to position j, drawn 
the lines of irrational slope l / u  and l / u  on a checkered sheet of paper and indicated 
the partial staircases k ( j )  and I (  j ) .  Now he asks us to continue the sequence without 
knowing U and w. Let us try adding a 1 in position j+ 1. Then a unit must be added 
to k, while 1 remains constant. If this action does not cause k to deviate from l / u  by 
more than one unit of ordinate, the choice was right. Otherwise, let k stay level for 
another step and put a 0 in position j+ 1 instead. The choice is unique and the 
procedure of forcing the stairs to follow the slopes as closely as possible is guaranteed 
to produce the correct sequence ad infinitum. The elements 0 and 1 will as a result be 
distributed ‘as evenly as possible’ along the sequence. It is not known whether other 
deterministic rules exist for generating binary sequences which are quasiperiodic and 
possess explicit expressions for k( j )  and I (  j ) .  

In 0 2 we discuss properties of the sequences p ( j )  in order to gain a better insight 
into their nature. In 0 3 we present in some detail the construction of the diffraction 
spectrum and the structure factor for arrays of line segments isomorphic to p ( j ) .  
Finally, we present in 0 4 results about distributions of certain sequences of irrational 
numbers modulo 1. Although apparently unrelated to the main subject of this paper, 
these results were obtained while carrying out various computer experiments with 
linear Fibonacci sequences and their connection with the Fourier transform and the 
diffraction spectrum will be shown. 

2. Properties of the sequence p ( j )  

(a) Let z (M,  j )  denote the fraction of 0 in a finite segment of length M starting at 
position j of the infinite sequence p ( j ) .  The fraction of 1 is 1 - z ( M , j ) .  Let E > O  be 
an arbitrarily small number. We say that the density of 0 is uniform on the aoerage if 
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there exists MO( E )  such that for any M > MO( E )  the following inequality holds indepen- 
dently of jl, j,: 

I z ( M ,  i l l  - z ( M ,  j,) I < E .  ( 7 )  

For the sequence p ( j ) ,  the function z ( M ,  j )  is obtained from (6): z ( M , j )  = 
{ [ ( j +  M)/u + w] -[ j / u  + w ] } / M .  Using the inequality a - b - 1 < [ a ]  - [ b ]  < a - b + 1 ,  
it suffices to choose MO( E )  = 2/ E in order to satisfy (7). The condition is also satisfied 
independently of U and U, a result which follows from the fact that l ( j )  and k ( j )  are 
‘linear on the average’. Uniform average density is, of course, a trivial property of 
periodic and of uniformly random binary sequences. If, however, U is irrational, the 
sequence p ( j )  will be quasiperiodic due to property (7) which distinguishes this from 
other types of aperiodicity. 

Example 1 .  U = 4.656 871 196. .  . > 2, U = 1.273 457 8 1 3 . .  . < 2, w = 0. The sequence is 
000100001 000100001 00001 000100001 000010001 . . . , 

(b) In a sequence p ( j )  one of the binary constituents, 0 or 1, always appears 
isolated, while the other comes in strings of consecutive elements. Assume that two 
consecutive 1 appear at positions j and j + l .  Then according to (2) we must have 
[ ( k  + 1 - w) U ]  - [ ( k  - w) U ]  = 1. The arguments of the greatest integer functions in this 
equation must therefore satisfy 0 < ( k  + 1 - w )  U - ( k  - w )  U < 2, or, since U > 1, one must 
have 

1 < u < 2 .  (8) 
An attempt to derive a similar condition for two consecutive 0 leads to 1 < U < 2, which 
means, of course, U > 2. We conclude that consecutive 0 and 1 cannot coexist in a 
p (  j )  sequence. The rule is 

1 < u < 2 ,  u > 2 :  consecutive 1 and isolated 0 (this sequence will be called 1- 
dominant); 

1 < U < 2, U > 2: consecutive 0 and isolated 1 (this sequence is called 0-dominant). 
Notice that the parameter w plays no role in establishing this property. 
(c) The interchange between U and U in ( 1 )  produces the complementary sequence, 

i.e. 0 are interchanged with 1. The following properties will be specifically derived 
for 0-dominant sequences and can be readily translated to 1-dominant by use of 

(d) The number of consecutive 0. What must be the value of U in order to have 
strings of h consecutive 0, preceded and followed by isolated l ?  The sites of these 1 
will be h + 1 places apart, which means that there must exist some values of k such 
that [ ( k + l - w ) u ] - [ ( k - w ) u ] = h + l .  From this follows 

property (c). 

h < U < h +2 .  (9) 
The next question is: given U in the interval (9), are there strings of 0 of different 
lengths h + g, g = * 1, * 2, . . . , also present in the sequence? By the same argument 
there must be values of k for which [( k + 1 - w)u] - [( k - w)u] = h + g + 1, from which 
it follows that 

h + g  < U < h + g + 2 .  (10) 
Intervals (9) and (10) will partially overlap in two instances: g = 1 or g = -1. This 
means that for any value of U in the interval 

h < u < h + l  (11) 
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the corresponding 0-dominant sequence will contain strings of consecutive 0 of sizes 
h = [ U ]  and h - 1 = [U - 11 only, separated by isolated 1 (see example 1 with [U] = 4). 
Notice again that the parameter w plays no role in shaping this property either. 

(e) What then is the role of w? Let us take in example 1, say, w = -0.4 instead 
of 0. The new sequence will be 

0100001000010001000010000100010000100 . . .  . 
By properties (a) and (d) this sequence has exactly the same density of 0 and the same 
string structure as the former. However, the strings of 4 and 3 consecutive 0 follow 
each other in a different way. The role of w is to rearrange the binary elements of the 
sequence while preserving the string structure and the average density; w is called the 
‘shift parameter’. As a matter of fact, there are as many different p ( j )  sequences with 
the same string structure (U) as there are points w on a line, i.e. an uncountable infinity 
of them. This can be proven as follows. For two different values w and w‘ ,  construct 
the sets S,  and Si according to equation (2): S , : j =  [ ( k -  w)u], kE N, and Si: j ’ =  
[(k - w’)u], k E N. What is the condition on w and w’ for these sets to be identical? 
We must have, of course, [( k - w ) u ]  = [( k - w ’ ) u ] ,  k E N. If this equality is true for 
some k, then 

[ku - WU] < k~ - W ’ U  < [ ku - WU] + 1. (12) 
Writing [ a ]  = a - { a } ,  where the curly brackets denote the fractional part of the 
argument, we obtain from (12) after rearranging terms: 

By a famous theorem of Weyl (1916), if 8, is irrational, and O2 is a real number, then 
the set (k8, + e*}, k E N is uniformly and densely distributed in the open interval (0 , l ) .  
The sets S, and Si will be identical when (13) is satisfied for all k E N, i.e. if and only 
if w’ = w. Otherwise, there exist finite values of k for which either end of inequality 
(13) will eventually be violated. We conclude that two p ( j )  sequences with the same 
U, but different w, will eventually differ starting from some finite position j .  This 
property has important consequences on the nature of the Fourier transform of the 
corresponding array of segments (see 0 3.3). 

The parameter U determines the global structure of a p ( j )  sequence. By looking 
at finite segments taken from the middle of an infinite p ( j )  sequence there is no way 
one can tell what is the value of w. The value of U, on the other hand, can be estimated 
with increasing accuracy by looking at ever longer segments. 

U( W ’  - W )  < { ku - WU} < 1 + U( W ‘  - w ) .  (13) 

3. The diffraction spectrum of p ( j )  

3.1. The quasiperiodic linear array 
The following double inequality can be derived from equation (5): 

(14) 
and will be used subsequently. 

Consider now two characteristic line segments. Without loss of generality one can 
choose the shorter of the two as unit length. The other will be a, a real number ((+ > 1). 
Construct a sequence of segments isomorphic to p ( j )  by matching 

- (1 + uw)  < j - uk < U - (1 + uw) 

(segment a) + (element 1) 
(segment 1) + (element 0). 



3304 Z Aviram 

The total length of the first j segments is 

X, = ka+ ( j  - k )  * 1 =J+ k ( u  - 1) j = 1 , 2 ,  . . .  . (16) 

Define x,=O. The model system having pointlike identical ‘atoms’ located at xj, 
j = 0, 1,2, . . . , can be mathematically described by a sum of delta functions: 

G ( X ) = ~  S(X-x,). (17) 
j 

3.2. The periodic structure in two dimensions 

Consider a rectangular lattice in the (X, Y) plane with periods L in the X direction 
and AL in the Y direction. The coordinates of the lattice points are (mL, nAL), m, n 
integers (figure 1). The x axis on which the function G(x)  will be constructed passes 
through the origin. Denote by 1/17 its slope in the (X, Y) plane. The equation of the 
x axis is 

Y = (1/ 7 ) X .  (18) 
Let b be the unit vector in a direction perpendicular to the x axis 

1 
b =  

where - 17 is its slope in the (X, Y )  plane. Through every lattice point construct 
identical line segments (B) in direction b. Their position relative to the corresponding 
lattice point is defined by two numbers y, 8, such that the endpoint coordinates of the 
segment passing through the origin are (7, q y ) ,  and (8, - sa), respectively (figure 1). 
The total length of a segment is d = ( y  + 8)/cos 8. The assembly of all B segments 
forms a doubly periodic structure in the (X, Y) plane. Some segments will intersect 
the x axis, others will not. The purpose is to determine the five unknown parameters 
L, A, 7, y, 8, in such a way that the periodic structure intercepts the x axis at xj, 
j = O ,  1,2, .  . . , and only at xj .  

Choose a lattice point (mL, nAL) and assume that its B segment intercepts the x 
axis (direction a) at the point (X, Y). Denote by q the distance between (X, Y) and 

b 

Figure 1. This shows the periodic rectangular lattice, the projections axis a, the direction 
of projection b and the B segments. 
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(mL, nAL) (figure 2). Together with the origin 0, these points form a right triangle 
and we have the following vector equation: 

Solving the system of three equations (18) and (20) for q, X ,  Y, we obtain 

q / ( 1 + q 2 ) 1 / 2 = L ( m - n ~ q ) / ( 1 + q 2 )  (21) 

X = L q ( m q  + nA)/(l+ q 2 )  (22) 

Y = L ( m q  + nA)/(l+ q2) .  (23) 

x = ( X’ + Y’)’/’ = ~q (m + n~ / q ) (  1 + q2)- ’ / ’  (24) 

L = ( 1  + q y /  q (25) 

A / q  = U -  1 (26) 

If (X, Y) should be a point xj of the sequence on the x axis, then the quantity 

must be of the form (16). Put 

and identify m with j and n with k. The values of m, n in a pair (m, n) corresponding 
to a lattice point which supports a B segment intercepting the x axis at xj are, of 
course, not independent of each other; they must satisfy the double inequality (14). 
On the other hand, q must satisfy the double inequality 

- S/cos e < q < y/cos e. (27) 
Substitute (21) into (27) and compare the result with (14). Then, reverting to the usual 
meaning of rectangular brackets, and using equations (25) and (26), the following 
expressions are obtained for the unknown parameters: 

q = [ U / (  U - 1 ) y  (28) 

A = [ u ( u - ~ ) ] ” ~  (29) 

(30) L = A’/’ 

S =(U- l ) ( l / ~ +  w)/A”’ 

y = (U - 1 )( 1/ U - w ) / A ” ~  

where 

A = U/ U + 1/  U = ( U  - 1 + v ) /  v (33) 

Figure 3. Auxiliary to equation (42). 
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is the weighted average length of the segments cr and 1. Do not worry about the 
apparent dimensional inconsistency of some of the expressions above: all quantities 
are dimensionless. 

The preceding equations show that the periodic lattice and the direction of projec- 
tion are completely determined by U and cr. Since 6 + y is also independent of w, this 
parameter only affects the proportion into which the lattice point divides a B segment. 
In other words, by keeping v and U fixed, and changing w, the B segments will 
collectively slide relative to their supporting lattice points. As a result, the sequence 
of intercepts on the x axis will change while preserving the relative frequency of the 
two types of segment. 

3.3 The Fourier transform 

Adjacent to every B segment of the lattice define a rectangular domain R of length d 
and width E (figure 3). Define the function 

if (X, Y ) E  R 
if (X, Y ) e  R .  

g‘,R’(X, Y)’ 

Then, the sum of giR’ over the lattice is a doubly periodic function 

gE(X, Y ) =  1 glR’(X-mL, Y-nAL) 
m. n 

with periods L, AL, such that 

g,(X, Y ) d X d Y = l .  5: loAL 
On the x axis we have 

(34) 

(35) 

X = x sin 8 = x i  A’’2 

G(x)  = lim g,(x/A’/2, x [ ( a -  I ) / V A ] ” ~ ) .  

Y = x  COS 8=x[(a- l ) /vA]”* .  (37) 

(38) 

Recalling the definition of G ( x )  in equation (17), we can write 

E ’ O  

The function gg(X, Y ) ,  on the other hand, can be expanded in a double Fourier series 

g,(X, Y) = 1 c‘,“: e x p [ 2 ~ i ( m X / L +  nY/AL)]. 
m. n 

Y 

(39) 

\ Q 

Figure 3. The function gLR’(X, Y). 
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On the x axis we have 

m(X/L)+n(  Y/AL)=x(m+n/u)/A.  

Therefore, on the x axis 
g,(x/A'/*, x [ ( a -  l)/uA]'/*)= c',",! exp[2~ix(m+n/u)/A].  

The Fourier coefficients of G(x)  are defined by 

F ( s )  = lim - 

m,n 

1 '  
G(x)  exp(2~isx)  dx 

T + a  T 10 
1 '  =!z lo g,(x/A"*, x[(u-l)/uA]"*) exp(2risx) dx 

e x p [ f ~ i x ( s + ( m +  n / u ) / A ) ]  dx. 
1 '  

=lim c',",', lim - 
~'0 m,n T 10 

It follows that 

(43 1 lim c',",', if s = smn( U, a )  = -( rn + n/ U)/ A 

if s # s m n ( u , a ) ;  m, n=0, *1, *2 ,... . 
F (  s) = {;o 

The spectrum s,, is parametrised by two sets of integers m, n and is infinitely dense 
on the s line provided that U is irrational. This well known general property is governed 
by the linear combination m + n/u, where U, of course, is one of the specifying 
parameters of the quasiperiodic sequence: quasiperiodicity implies an infinitely dense 
spectrum of Bragg peaks of zero width. The parameter a which specifies the relative 
size of the segments appears in the denominator A, which plays the role of a scaling 
factor. The location of spectral lines is independent of the parameter w, which means 
that the whole uncountably infinite set of sequences with common U, U, but different 
w, produce identically located peaks. 

The Fourier coefficients can be calculated by the standard procedure 
rL rAL 

lim c:; = ~2 J, J g,(X, Y )  exp[ - 2 ~ i ( m X / L +  nY/AL)] d X  d Y  (44) 
0 €+O 

However, it is more convenient to use the following lemma. Let gE(X, Y )  be the 
function defined in equation (35). Then, for any function Z(X, Y), the following 
equality holds: 

lim E - t O  loL/oALZ(X, Y ) g E ( X ,  Y ) d X d Y = ( S f y ) - '  Z(X, -7X)dX.  (45) 

Substituting for Z the imaginary exponential appearing in equation (44), and using 
equations (28)-(32), we obtain 

c,, = L  j''L exp[ - 2 ~ i (  m - -  1 n ) t ]  d[ 
a-1 - y / L  a - 1  

S/  L =  (U - l ) ( l / ~  + w ) / A  y /  L =  ( U  - l ) ( l / ~  - w)/A. (47) 
Writing F(s, ,)  = A,, exp(iO,,), we obtain the amplitude 

sin( TO) 
A,, =- 

TO 
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and the phase 

om, = n R ( 2 w  - 1 + 2 / v )  (49) 

where 

R = -s,,[ - ( a -  l ) ,  ( a -  l ) / u ]  = [ m ( a -  1)-  n]/A. (50) 

Only the phase a,, depends on the shift parameter w. Therefore, the measurable 
structure factor 1 F(s , , )  1’ is completely determined by U and a. 

All sequences with equal U, a, but different w produce identical spectral lines 
(location and intensity). The functional form of the amplitude A,, implies that the 
smaller the value of R, the larger is the corresponding spectral line. Equation (50) 
shows that the strongest peaks are contributed by points in the ( m ,  n) plane which are 
closest to a line of slope ( a  - 1). The intensity should decrease in directions away 
from the line. The distribution of intensities is thus governed by the relative size a of 
the segments and not by the sequence parameters. The solution (45)-(47) is, of course, 
unique. However, the choice of the doubly periodic lattice and the x axis in the ( X ,  Y) 
plane are not. For example, we may impose a particular direction for the x axis; then, 
in general, a non-orthogonal projection direction will result. Other options are 
available. 

The set of frequently quoted Fibonacci sequences is obtained from the general 
sequence (equation (1)) by setting U = 4 = (A+ 1) /2 ,  the golden mean, and arbitrary 
w. If, in addition, we choose a = 4, then the following values of parameters are 
obtained: 

77=4 A = l  A = 3 - 4  L = ( 3  - $I)”*. (51) 
These equations show that the doubly periodic lattice is square. The spectral lines are 
located at 

s = s m f l ( 4 ) = - ( m + n / 4 ) / ( 3 - 4 ) =  - ( m d + n ) / A  m , n = O ,  * l ,  1 2  , . . .  (52) 

a result which has been known for some time (Levine and Steinhardt 1984). From 
(50) we obtain 

R = ( m / +  - n ) / ( 3  - 4 )  = ( m  - n 4 ) / f i  m,n=0 ,  * 1 , . . .  . (53)  

4. The distribution of (xjc$”) mod 1 

The material presented in this section is only marginally related to the main topic of 
the paper. We obtain the distributions in the interval (0 , l )  of certain infinite sequences 
of irrational numbers modulo 1, related to the Fourier transform of a Fibonacci 
sequence of the type discussed at the end of 0 3.3.  The distributions are quite interesting 
in themselves, although it is rather doubtful whether they might be encountered in 
another context. 

By operating the Fourier transform directly on G(x)  in equation (17) one obtains 

1 ’  
F ( s )  = lim -c exp(2nixjs). 

I - w  J , (54) 

At an early stage of this work we attempted to calculate F ( s )  numerically by summing 
about lo6 terms of (54) for some representative values of s. We chose the Fibonacci 
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sequence: v = U = 4, w = 0, k = [ ( j +  1)/4],  xj = j +  k/+ The attempt, of course, was 
rather unsuccessful because the spectral lines are very narrow for sufficiently large 
values of J, and lie at irrational values of s which can only be approximately represented 
by computer words of finite length. 

It was recognised, however, that the discrete infinite summation in (54) could be 
reduced to the integration of a (piecewise) continuous function over a finite interval 
if, for some fixed value of s, the distribution of the fractional parts 

rj = (xis) mod 1 = xjs - [xjs] O < r j < l  ( 5 5 )  

were known. (The use of rectangular brackets for the greatest integer function should 
be clear from the context.) For then, subject to additional conditions, one could write 
exp(2rixjs) = exp(2.rri[xjs]) exp(2.rrirj) = exp(2xirj) and therefore 

F ( s )  = h,( r) exp(2.rrir) d r  (56 )  lo' 
where we have omitted the subscript j from rj and h,( r) is the normalised distribution 
of r for a fixed value s. All that is required from h,(r) is that it be integrable on the 
interval (0, 1). The fractional parts rj must fill densely the interval (0, l) ,  or at least a 
subinterval thereof. 

We have investigated the important set of values s = @', where p is an integer: 
positive, negative or zero. This set is related to the property of self-similarity of the 
Fibonacci sequence. For this case it is easy to show that the fractional parts rj are all 
different. If indeed one assumes that rj = rl for j # I, a contradictory equation results 
between an integer and an irrational number. Let us now relabel the function h and 
denote by h,(r) the distribution of fractional parts (xj@') mod 1, j = 1,2 , .  . . . We 
have generated sequences of several million terms j ,  and sorted the fractional parts 
along the interval (0, 1). The distributions hp( r) were found by computer experiment 
to be piecewise uniform, taking at most two constant values (including zero) on at 
most three subintervals whose union is (0,l) .  The results are summarised in figure 4 
and in table 1. The question is: are they rigorous? 

hP _j1 1 hc ~~~ h p : l - ]  

hi= 0 
0 r ' r" 1 0 r l  rf i 1 rd r" 

Figure 4. The distributions h,( r ) .  ( a )  p > 0; ( b )  p < 0, odd; ( c )  p C 0, even. 

r r r 

No matter how elaborate a computer experiment may be, there is no way we can 
tell by it alone whether or not r is a densely distributed variable. If the distributions 
are indeed rigorous, then working from the analytic equation (44) for F(s , , )  = lim c:;, 
one must be able to recover an expression of the form (56)  with an appropriate 
distribution hp(r). If this can be done then the above statement concerning the 
distributions of r would have attained indirect validation. 
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Table 1. The distribution h p ( r ) .  

r' r " r ) ' -  h"-  h' Figure P 

We can start from equation (46) by substituting the parameters corresponding to 
the Fibonacci sequence 

where c S / L = ( ~ ~ + ~ ) - ' ,  y / L =  4-1(42+l)-'. Achangeofvariable e =  t l (24-l)gives  

c,, = {"* exp( -277i- - " t )  dt. 
- 1 / * 2  2 4 - 1  

The general form of the Fibonacci spectrum s,, was given in equation (52). It is easy 
to see that s = 4, belongs to the spectrum and in fact the integers m, n are uniquely 
determined by p .  

The argument of the exponent in equation (58) can be formulated as 

( m  - n 4 ) / ( 2 4  - 1) = -4%" - V 4 ) .  

( m  - n 4 ) / ( 2 4  - 1) = ( -  1 / 4 ) p - ' .  

(59) 

(60) 

For the special form s,, = 4 p  under consideration we have 

Let us illustrate the procedure for p > 0. All other cases listed in table 1 are somewhat 
more elaborate but can be worked out following the same general idea. By making 
another change of variable r = -( - l / ~ $ ) ~ - ' t ,  we obtain 

The next, and final, step of calculation is the mapping of the integration range in (61) 
onto the interval (0, l),  possibly by allowing for a piecewise constant function which 
would multiply the integrand. If p = 2q, then 

0 

-+- -12q+l l  +I,"-") exp(2rir)  d r  

- - 42q-1( 1,"2q + 1' ) exp(2rir)  d r  
1-*- (24+11 

= Io1 h,(r) exp(2rir)  d r  

which is of the form (56) and where h,(r) is the function shown in figure 4 ( a )  and 
table 1. For p = 2q + 1, the calculation is just as easy. Negative values of p ,  however, 
require additional manipulation at the stage of range mapping. For then the limits of 
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integration are of the general form * 4-p, with 4-p > 1. The integer parts of these 
limits may be discarded for they contribute nothing to the integral. A problem of 
normalisation also arises which can be dealt with by adding a suitable constant which 
multiplies a zero-valued integral over (0, 1). 

This calculation shows indeed that hp( r )  is rigorously piecewise constant and r is 
densely distributed in (0, 1). 

5. Concluding remarks 

We have presented the explicit solution for the diffraction spectrum of a fairly general 
family of linear quasiperiodic sequences of identical atoms separated by one of two 
characteristic lengths. The main limitation is that one of the binary elements always 
appears isolated in the sequence, to which, however, no particular significance should 
be attached for this happens to be an inherent property of the type of sequences under 
investigation, based on theorem 1. It is not known whether other generating rules exist 
which produce quasiperiodic sequences and permit an explicit solution of the Fourier 
transform in a closed form. 

The solution is uniquely determined by three parameters of the problem: two of 
them, U and w, specify the sequence while the third, U, is the ratio between two 
characteristic atom separation distances. The parameter U must be irrational and 
determines the string structure of the binary elements in the sequence. This is also the 
parameter which, up to a scaling factor, uniquely determines the location of the spectral 
lines. The parameter w governs the possible ‘shuffling’ of the binary elements along 
the sequence, while preserving the string structure. Finally, the parameter U determines 
the distribution of intensities of the spectral lines. w and U may be any real numbers. 
While the sequence and its Fourier transform are uniquely specified by U, w, U, the 
two-dimensional periodic lattice from which the projection is constructed need not 
be so: there is some, although not much, freedom in deciding which of the lattice 
parameters would be specified in advance, but the natural choice is that presented in 
this paper. Perhaps the most significant explicit result of this work is that for every 
fixed U and U, there exists an uncountable infinity of diferent sequences exhibiting 
identical measurable diffraction patterns, i.e. locations and intensities, the only 
difference being in the phase. This provides strong support to analogous assertions 
about quasiperiodic tilings of two- and three-dimensional spaces with pentagonal and 
icosahedral symmetries, respectively. It is not easy to find a physical system which 
lends itself to description by a one-dimensional model of quasiperiodic arrays. 
Nevertheless, it seems useful to investigate a number of questions which the present 
work has left unanswered: (a) the possibility of relaxing the inherent restriction of 
isolated elements typical of the investigated sequences; (b) a way of taking into account 
different atoms in each type of segment (cell); and (c) ternary sequences in one 
dimension. 
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